
International Association

of Software Architects

Application Security

Principles

throughout the Software Development Lifecycle

Stephen Evans

Secure Application Services APAC

International Association

of Software Architects

Gathering basic functionality requirements

Considering use cases, charting DFD

Implementation phase – from concept to reality

Validation phase – functional testing

Deploy (client sites, Intranet, Web), maintain

Define

Requirements

Design

Develop

Test

Deploy

Software Development Lifecycle

International Association

of Software Architects

Software Development Lifecycle

Define

Requirements

Design

Develop

Test

Deploy

Security

Requirements
Defining Security requirements

Secure DesignNegative Use Cases, Threat Models

Code ReviewCode Review, Pair Programming

Security TestingSecurity Validation – Security Testing

Secure

Deployment
Patches, Maintenance, Incident Handling

International Association

of Software Architects

Security

Requirements

Secure Design

Code Review

Security Testing

Secure

Deployment

Conceptual phase:

• Bugs and faults captured in this stage –

never existed

Natal phase:

• Bugs and faults captured in this stage –

Incur implementation costs, possibly roll back design

[Proactive Security]

Existential Phase: [Reactive Security]

• Bugs and faults captured in this stage –

Incident response, patches, patch management

Software Development Lifecycle

International Association

of Software Architects Security

Requirements

• Security Risk Profiling

• Security Requirements

International Association

of Software Architects
Risk: Defined

Risk = Threat x Vulnerability x Cost

• Threat – frequency of potentially adverse

events

• Vulnerability – likelihood of success of a

particular threat against an organization

• Cost – total cost of the impact of a

particular threat experienced by a

vulnerable target

International Association

of Software Architects Security Risk

Profile: defined

• An exercise to determine the risk

rating associated with an

application and its development

• Takes place in the beginning of

the SDLC

• Output geared toward both Project

Managers & Security Personel

• Output specifies security tasks to

be carried out during the SDLC

• “How risky is this application?”

questionnaire/discussion

International Association

of Software Architects Creating a risk

measurement rating

• Each application is evaluated and receives a

risk rating

• The risk measurement is based on several

questions (10-15) tailored to each

organization

• Each question will receive a risk score based

on a scale (such as, low/med/high or 1-5)

• The total risk score gives a general risk rating

of the application

• Compare risk ratings across an

organization to effectively allocate

security resources

International Association

of Software Architects Security Risk

Profiles

• Application: Estimated calendar time for project completion?
Size of the total project team? How many different physical
locations will the application be deployed?

• Development: How many developers will be used? Update of
an existing application or a brand new application? Application
architecture design created internally or by a partner?

• Access & User: Will this application use credential access?
Who will have access to this application externally? Will this
application be available externally on the Internet?

• Application Processing: What information is processed by
the application? What is the highest data classification of the data
used by the application? Is data converted by the application? If
so, what is the difficulty?

• Reputational Risk: Regulatory - What is the project‟s visability
to regulators? Media - What is the project‟s visibility to the media?
Public Relations - What is the project‟s visibility to the customers?

International Association

of Software Architects

Risk Profile Analysis: Categorize Risk

• 75% and above: High Risk

– High likelihood of application/data compromise and

reputational damage

– First applications addressed in corporate security

budget

• 50% - 75%: Moderate Risk

– Good possibility of application/data compromise and

reputational damage

• Below 50%: Lower Risk

– Low/medium chance of application/data compromise

and reputational damage

International Association

of Software Architects

Risk Profile Analysis: Security Reviews

and the SDLC

High Risk Med. Risk Low Risk

Application Risk Assess. X X X

Security Requirements

Review

X X

Threat Modeling X (optional)

Security Design Review X X

Security Code Review X (optional)

Security Testing X X X

Using the application‟s risk rating, the Project Manager can plan the

appropriate security reviews during the SDLC.

International Association

of Software Architects Functional vs. Security

Requirements

• Determine application functionality

• Based on traditional use cases

• Define logical constraints

• .. Are modeled after a “lawful” user

Security Requirements

• Constrain application functionality

• Are modeled after ABuse cases

• Focus on the “else” rather than the “if”

• .. Are modeled after a “chaotic” user

Functional Requirements

International Association

of Software Architects
Use Cases

Given the classic ATM use cases:

- Customer inserts card

- Customer enters PIN

- Customer asks for money

- Customer gets money

- Customer leaves

International Association

of Software Architects
ABUse Cases

Customer inserts card
• Inserts a piece of plastic; inserts a forged card; attempts to

bypass card

Customer enters PIN
• Does not enter PIN; enters longer PIN; brute forces PIN

Customer asks for money
• Asks for $10000; tries to overdraft; tries other operation

Customer gets money
• No communication to mainframe; hatch could be jammed

Customer leaves
• Attempts repeated transactions; customer attempts to break

ATM; customer attempts to take ATM home

International Association

of Software Architects Establishing Security

Requirements

• Gather up all valid use cases

• For each use case consider:
– What am I assuming? Implicitly or explicitly?

– What constraints have I placed on the user?

– What could possibly go wrong?

• Allow yourself to go off on tangents

• Don‟t get too specific as to attacks
– Threat Modeling, next, will give you time for that

• Consider all possibilities
– Most may be discarded, but consider all

International Association

of Software Architects
Secure Design

• Threat Modeling

• Security Design Review

International Association

of Software Architects
Threat Modeling

• Threat modeling analyzes theoretical risks

and “attack vectors”

• Attack vectors define:

– Direction: avenue of attack

– Quantity: severity of attack

• Direction scoped by the STRIDE

methodology

International Association

of Software Architects Defining Attack

Vectors : STRIDE

• Popular Methodology used by Microsoft

• Defines common attack vector classes

Vector Class Examples

Spoofing Session Hijacking, MiM attacks

Tampering Input malformation, cookie poisoning

Repudiation Rogue clients, Transaction disavowal

Info. disclosure Privacy leaks, overly descr. errors

Denial of Service Broken exception handling

Esc. of Privilege Broken access control

• Not all classes are necessarily applicable in your app

International Association

of Software Architects Quantifying Attack

Vectors : DREAD

• Another Popular Methodology used by Microsoft

• Defines a metric to assign values to vectors

Vector Class Examples

Damage potential Impact of successful exploitation

Reproducibility Special settings, or mitigating

circumstances

Exploitability Likelihood of successful exploitation

Affected users %-age and class of users affected

Discoverability Likelihood of uncovering vulny

• Metric may be used to prioritize attacks

International Association

of Software Architects Defining Attack

Vectors: Attack Trees

Goal:
Obtain username/password to the system

Attack:
Brute Force Username/Password combinations

Attack:
Sniff session traffic

Countermeasure:
strong password policy

Countermeasure:
Account Lockout

Countermeasure:
Encrypt channel

Countermeasure:
Use additional Auth.

(e.g. Client Certs)

International Association

of Software Architects Security Design Review:

Areas of Analysis

• Areas of Analysis contain many topics to

be reviewed and analyzed

• Topics follow company standard

framework for secure design

• Follow security industry best practices if

no company standards or defined security

policies/guidelines

• Results in list of recommendations to

current design

International Association

of Software Architects
Areas of Analysis

• Authentication

• Authorization & Access Control

• Data integrity

• Error and exception handling

• Monitoring and logging

• Cryptography and encryption

• Database security

• Privacy, confidentiality and segmentation

• Web security

• Product Security

International Association

of Software Architects Design Review:

Business Impact Matrix

LOW HIGH

Red flag: fix immediately Red flag: plan to remediate

Fix at client's discretion Bear risk , or f ix at client's discretion

LEVEL OF EFFORT TO REMEDIATE

H
IG

H
LO

W

Security metrics

Training and awareness

Sec dev processes

Authentication features

Authorization errors

Authentication errors

Authorization features

Dead code

Cross-site scripting

Data validation errors

User and admin app

colocation

Logging

DB/App contro ls and

segmentation

Poor password handling

Sensitive info

manipulation and

discovery

Bad error messages

LOW HIGH

LEVEL OF EFFORT TO REMEDIATE

H
IG

H
LO

W

D
EG

R
EE O

F R
ISK/EASE O

F EXPLO
IT

Business Impact Matrix — Summary of Findings

Each finding‟s x-y position in the Business Impact Matrix indicates the relative risk and likelihood of exploit (vertical axis)

and the effort required to remediate (horizontal axis). The circle diameter signif ies the overall impact on your business

and brand value.

Low

Business

Impact:

High

International Association

of Software Architects
Code Review

• Approaches

• Tools

International Association

of Software Architects
What is Code Review?

• Security bugs may stem from many reasons:
– Improper use of language API calls (for example, Strcpy)

– Incorrect framework/class utilization (as in, Java/.Net)

– Design bugs or use-cases that were not considered

• Project source is carefully scrutinized, looking for:
– Coding errors

– Dangerous API calls

– Implementation faults

– Design-Level and Logic security problems

• Challenges:
– Optimally, code review will obtain 100% coverage

– Practically, this is almost never achieved

– Methodologies have been devised to max efficiency

International Association

of Software Architects Approaches:

Low Hanging Fruit

• Scan code for potential buffer overflows
– Insecure copy operations: strcpy/strcat

– Improper formatting: sprintf

– Insecure input methods: scanf, read, recv

• Find the “easy” bugs
– Variable format strings: *printf(var); /* C/C++ */

– malloc()/free() pairings /* C/C++ */

– Improperly escaped input /* SQL injection, Null Bytes */

– Insecure system calls /* all languages */

– Command injection /* all languages, system/exec */

– Directory Traversals /* all languages, file input */

International Association

of Software Architects Approaches:

API Handling

• Focus on specific API calls:

– Object Creation (Win32 CreateXXX, fopen…)

– System escapes (exec, CreateProcess, system())

– Dangerous APIs (str* functions, JNI, Unmanaged code)

– Third Party/other component API calls

• Validate all API return codes

– Make sure API calls are assigned as an lvalue

International Association

of Software Architects Approaches:

Danger Zones

• Extra care is given to sensitive segments:
– Authentication logic

– Authorization logic

– Cryptography-oriented code

– Integer Arithmetic

– Input handling

– Exception Handling

– Multi-Threaded code

• At the expense of static segments:
– Functions with no input

– Constant code paths (with no flow control)

International Association

of Software Architects Approaches: Pair

Programming & Review

• A programmer is likely to overlook his own

faults

• Reviewer is a different person, validating:

– Design was properly implemented

– Patterns were followed

– Code was correctly annotated and

commented

– Assumptions made in code

documented and validated

International Association

of Software Architects Approaches:

Manual Tools

• Text processing utilities are especially

useful:

– grep: clever regular expressions to find:

• Dangerous APIs (e.g. “egrep „str(cpy|cat)‟”)

• Format string Bugs (e.g “grep „printf‟ | grep –v \” “)

– find: quickly find header files, or external

resources

• Use IDE “find in files”

– find variable/function definitions

International Association

of Software Architects Approaches:

Automated Tools

Automatic tools may often be used

• Secure Software‟s (now Fortify) RATS

– Rough Auditing Tool for Security scans C,
C++, Perl, PHP and Python source code

• FortifySoftware‟s Fortify Source Code
Analysis Suite

• Microsoft‟s FxCop

– Analyzes .NET managed assemblies

• Can jumpstart code review with
penetration test results

International Association

of Software Architects
Security Testing

• Quality Assurance vs. Security Testing

• Code Review and Security Testing

• Penetration Testing

• Tools

International Association

of Software Architects
Security Testing vs. QA

• QA testing tests Functional Requirements
– Making sure functionality is “as documented”

– Bugs are defined as intended functionality that differs
from the actual functionality

– Program does not do LESS than it is supposed to

• Security Testing tests Security
Requirements
– Making sure the program does not exceed its design

– Faults are defined as actual functionality that differs
from the intended functionality

– Program does not do MORE than it is supposed to

International Association

of Software Architects Code Review vs.

Security Testing

• Security Testing complements Code Review

– Code Review is a WHITE BOX approach

• Useful only when the source code is available

– Code Review may be severely limited by size
• Automated CR may yield false positives/negatives

• Manual CR is extremely time consuming

• Security Testing is a BLACK or GRAY BOX approach

• Always possible, even on closed source

• Insider knowledge helps, but not a prerequisite

• Security Testing can often be automated

International Association

of Software Architects Security Test

Cases

• Incorporate “abuse cases” conceived

during design

• Focus on boundary conditions:

– Large (or obviously invalid) input

– Border-range integers

– Metacharacters (anything non-alphanumeric)

– Timeouts

– Limited resource availability

– High system load

International Association

of Software Architects
Penetration Testing

• Vulnerability classification schemes
– OWASP Top 10, WASC, and Fortify donation to OWASP

• Vulnerability scanning vs. penetration testing

• Black hat hacking vs. pentesting as white hat
testing and application testing

• Non-intrusive vs. intrusive

• What pentesting can‟t do:
– Conclude that an application or system is safe

• What pentesting can do:
– Find design & implementation security issues

– Verify that configuration & hardening is done properly

International Association

of Software Architects
Testing Tools

• Virtualization Software
– VMWare, Virtual PC

• Unit Testing software
– JUnit, NUnit, C++Test, …

• HTTP Tools
– Browser Plugins

– Application Proxies (Paros, WebScarab, BurpSuite)

• Input “Fuzzers”
– Automated Tools (SPI Dynamics, etc.)

– Custom Scripts (Perl, Python, etc.)

International Association

of Software Architects
More Testing Tools

• Low Level Tools

– Ethereal/Wireshark

– TCPDump/TCPReplay

– Netcat, Nmap, SNORT

• Vulnerability Scanners

– Nikto

– Wikto

– Nessus

– Metasploit

International Association

of Software Architects
Secure Deployment

• Configuration

• Deployment

• Maintenance

International Association

of Software Architects
Configuration

• Should be simple and easy to understand

• Configuration files should be properly protected
– An application‟s management program should have read and

write access to the configuration files

– The application should have read access to the configuration
files

– Other users and groups should be denied any access to the
configuration files

• Initialization files, if any, should be protected by the
file system and stored where only authorized
administrators can access them

• Access privileges should be limited by default until
configured otherwise

International Association

of Software Architects Deployment:

Environment Hardening

• It is critical to harden the operating system

where the application will reside

• Strip out all unnecessary functionality

• Create standardized host builds

• Harden the overall operating environment

as well such as:

– Router configurations, firewalls, etc.

– Physical security

International Association

of Software Architects Deployment: Security

Documentation

• Document and map security requirements to

installed features, modules, etc.

• Document all security features fully:

– The security aspects and configurations of the

application

– All configuration settings that have security

implications

– The security ramifications of enabling any supported

feature

– Areas where privacy compliance is important

International Association

of Software Architects Deployment:

For Administrators

• Make sure they have the tools to secure it

• Make sure that they have access to the
information needed to make configuration
decisions

• Split administrative tasks among different
administrative roles

• Use admin or root privilege as little as possible,
both on the system and within the application

• Enforce best security practices on the
administrative account

International Association

of Software Architects Maintenance:

Logging / Auditing

• Log to a local log file or system log file

• Also log to a central logging server (hackers

modify local log files to cover their tracks)

• Ensure synchronized time across log machines

for log file correlation & for forensic readiness

• Logging Configuration:

– Regulate the amount of information that is logged

– Log critical information under normal operation

– Reconfigure to log extensively when troubleshooting

International Association

of Software Architects Maintenance:

Logging / Auditing

• Logging Sources: The documentation should

identify:

– What software modules produce log messages

– To what dirs and files they write these log messages

• Log Messages and their meaning: The vendor

docs should provide a table with the following

info accompanying the message ID:

– The event statement

– A brief explanation of the event

– The severity level of the event

– Recommended action, particularly for higher severity

events

International Association

of Software Architects Maintenance:

Monitoring / Administration

• Provide information that allows the admin to:

– Detect suspicious activity

– Corroborate and correlate suspicious activity

– Demonstrate accountability for that activity

• Remote Management: If allowed, follow strict

security practices:

– Authenticate the client (account and machine) using

multi-factor authentication controls

– Allow access only to legitimate accounts/machines

– Use an encrypted channel for all communication on

the management interface

International Association

of Software Architects Maintenance:

Patches & Updates

• Updates and patches delivered electronically

should be transmitted and executed over

secure channels and have technical controls

to ensure their integrity (e.g., digital

signatures).

• The procedures for procuring and applying

software updates and patches should be

clearly documented

• A penetration test is recommended after

each major software upgrade

International Association

of Software Architects Maintenance:

Incident Response

• Develop or recommend procedures for

reporting known/suspected vulnerabilities

and providing workarounds,

recommendations and mitigating

strategies

• CERT provides excellent resources,

documentation, and training to establish a

computer security incident response team,

or CSIRT (http://www.cert.org/csirts/)

International Association

of Software Architects Summary:

Conclusions

• Security is a property, not a feature. It‟s

very difficult to bolt it in on at the end of

the SDLC

• Security features add complexity, which

increases cost and project duration

• Secure application principles can be

added bit-by-bit (i.e. CLASP)

• The goal is a baked-in security process

from beginning to end that becomes

repeatable and measurable.

International Association

of Software Architects
References

• http://seclists.org

• OWASP (www.owasp.org)

• Books

• Blogs

http://seclists.org/
http://www.owasp.org/

International Association

of Software Architects

Thank You

